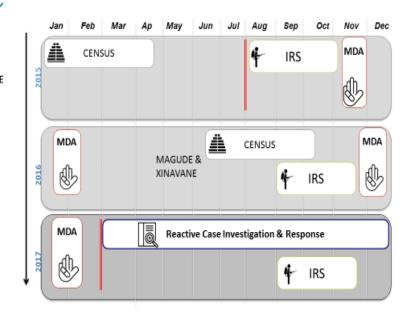
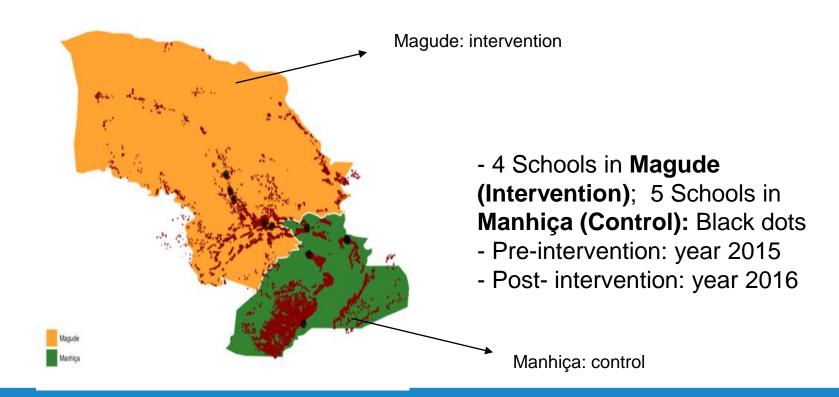

The short-term impact of a malaria elimination project on school outcomes: evidence from Southern Mozambique


Elisa Sicuri, Barcelona Institute for Global Health (ISGlobal)/University of Barcelona and Imperial College London

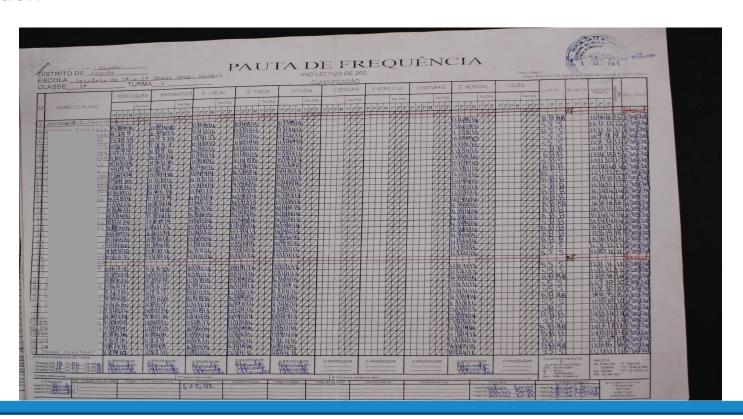
Joe Brew (ISGlobal), Laia Cirera (ISGlobal), Francisco Saute (CISM), Ranjeeta Thomas (LSE), Judit Vall (UPF, UB)

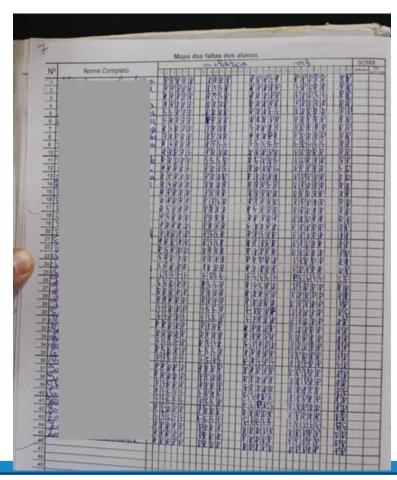
Malaria Elimination Project (MALTEM)

Magude district


Impact on health

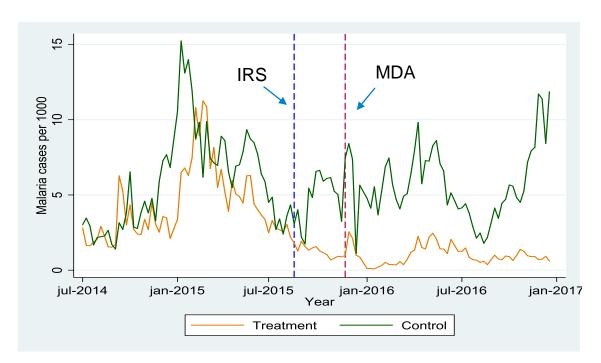
- Epidemiologist: interrupted time-series
- Economists:
 - Synthetic control
 - Difference in difference


Impact of malaria elimination project on school outcomes


- Improving health, while important in itself, can also lead to higher economic growth and development
- In this work, we focus on short term education outcomes (absenteeism and grades)

Intervention and control schools

Data collection from schools



Data collection from schools

		Mapa das faltas dos alunos				
			Mes Marie	a	20019	
No	Nome Completo	1234567	8 9 10 11 12 13 1	4 15 16 17 18 19 20 21	22 23 24 25 28 27 22	29 30 31
100	- D ton	00000	10000	PPPFP	PPPPP	PP
	- Total	00000	DEED	PPDDD	FPPPP	PP
2 0	3	00000	0220	90000	5 3 3 0 d d	PP
3 (0000	0000	poppe	8 dold 8	DD
4 1		CEDIDO	Debb	DODEC	PPDDDD	pb
5 (<u> </u>	Chibb	0000	מס סא ס	DDDDD	pp
6	<u> </u>	DE DOD	6666	Chobb	00000	pp
7	, and a second	A K K K K	10000	00000	Phhhh	nn
8 4	6	O VIEW P	1000	LA KALK	1	200
9 6	9	A A LA LA LA	KILFE	LEFF	FFFF	100
10 1	,	I B B D B F	PRIP	ALBERT	FEBBBB	H. F.
11 6	3	PPPP	IFE ED	BEBBE	B B B B B	PP
12 6	L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PABE	PPPF	PREPER	FD
13 6		PEPPP	PPPP	pppp	ppppp	000
14 0	į	86000	9999	POPED	DPDAD	PP
15 6		b b b b b	pph b	h h p p h	DON DO	n 10

Once more: Health impact

Weekly malaria incidence in treatment (Magude) and control (Manhiça) districts

Routine malaria surveillance - Ministry of Health data

Health impact, model

$$Y_{jt} = \alpha + \beta_1 Treatment_j + \beta_2 After_t + \beta_3 Treatment_j * After_t + \beta_4 Precipitation_{jt} + \beta_5 Temperature_{jt} + \beta_6 Month/TrimFE + \varepsilon_{jt}$$

 Y_{jt} = weekly incidence in group j at time t

Effect of the campaign on weekly malaria incidence

	(1)	(2)	(3)
Treatment	-2.176***	-2.180***	-2.428***
	(0.371)	(0.349)	(0.311)
After	-0.628*	-0.639*	-0.825**
	(0.374)	(0.352)	(0.321)
Treat*after	-2.256***	-2.230***	-1.882***
	(0.525)	(0.493)	(0.440)
precipitation	0.027	-0.095	
	(0.102)	(0.101)	
temp_min	-0.013	-0.123	
	(0.060)	(0.082)	
prec_L7			0.258***
			(0.088)
prec_L8			0.173**
			(0.078)
Constant	8.137***	11.538***	10.852***
	(1.329)	(1.818)	(4.054)
Trimester FE	X		
Month FE		Х	X
Observations	172	172	160
R^2	0.669	0.721	0.775

Absenteeism rates in Magude (treatment) and Manhiça (control) districts, 2015 - 2016

Mean grades in Magude (treatment) and Manhiça (control) districts, 2015 - 2016

Basic estimated model

- $Y_{ijt} = \alpha + \beta_1 Treatment_j + \beta_2 After_t + \beta_3 Treatment_j * After_t + \beta_4 SchoolFE + \beta_5 TimeFE + \beta_6 IndividualFE + \varepsilon_{ijt}$
- Y_{ijt} is:
 - Probability of student i in district j at time t to be absent from school
 - The trimestral grade of student i in district j at time t
 - The probability of student i in district j at time t to pass the eximination

Impact of the malaria elimination campaign on school absenteeism

	(1)	(2)	(3)
Treatment	0.006***	0.004***	0.004*
	(0.000)	(0.000)	(0.000)
After	-0.000***	-0.006	0.031*
	(0.000)	(0.012)	(0.003)
Treat*after	-0.021***	-0.020***	-0.021***
	(0.000)	(0.000)	(0.000)
	[0.005]	[0.005]	[0.005]
Constant	0.054***	0.041	0.039**
	(0.000)	(0.013)	(0.002)
School FE	X	Χ	Χ
Month FE		Χ	Χ
Trimester FE			X
Observations	996,411	996,411	996,411
R^2	0.017	0.020	0.019

OLS coefficients, with standard errors clustered by district in parentheses. P-values of wild bootstrap clustering procedure presented in brackets for the interaction term (based on 400 repetitions). * p < 0.10, ** p < 0.05, *** p < 0.01

Impact on grades (all subjects)

Dependent		All subjects			
variable	(1)	(2)	(3)		
Mean grade va					
Treatment	0.025***	0.024***	-0.002		
	(0.000)	(0.000)	(0.003)		
After	0.164***	0.146**	0.152**		
	(0.000)	(0.004)	(0.005)		
Treat*after	0.241***	0.241***	0.240***		
	(0.000)	(0.000)	(0.003)		
	[0.005]	[0.005]	[0.005]		
Constant	11.849***	11.877***	12.159**		
	(0.000)	(0.010)	(0.848)		
School FE	X	X	X		
Trimester FE		X	X		
Subject FE			X		
Observations	229,427	229,427	229,427		
R^2	0.015	0.015	0.047		

Discussion (focused on inter-institutional and interdisciplinary collaboration)

- Inter-institutional collaboration was key in this study, made the study possible through sharing research platforms and knowledge
- More interdisciplinary collaboration could have improved the findings: we could have shown that same/similar findings can result from different approaches

